Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.254
Filtrar
1.
Toxics ; 12(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38668485

RESUMEN

Cadmium ion (Cd2+) is a highly toxic metal in water, even at low concentrations. Microalgae are a promising material for heavy metal remediation. The present study investigated the effects of Cd2+ on growth, photosynthesis, antioxidant enzyme activities, cell morphology, and Cd2+ adsorption and accumulation capacity of the freshwater green alga Scenedesmus obliquus. Experiments were conducted by exposing S. obliquus to varying concentrations of Cd2+ for 96 h, assessing its tolerance and removal capacity towards Cd2+. The results showed that higher concentrations of Cd2+ (>0.5 mg L-1) reduced pigment content, inhibited algal growth and electron transfer in photosynthesis, and led to morphological changes such as mitochondrial disappearance and chloroplast deformation. In this process, S. obliquus counteracted Cd2+ toxicity by enhancing antioxidant enzyme activities, accumulating starch and high-density granules, and secreting extracellular polymeric substances. When the initial Cd2+ concentration was less than or equal to 0.5 mg L-1, S. obliquus was able to efficiently remove over 95% of Cd2+ from the environment through biosorption and bioaccumulation. However, when the initial Cd2+ concentration exceeded 0.5 mg L-1, the removal efficiency decreased slightly to about 70%, with biosorption accounting for more than 60% of this process, emerging as the predominant mechanism for Cd2+ removal. Fourier transform infrared correlation spectroscopy analysis indicated that the carboxyl and amino groups of the cell wall were the key factors in removing Cd2+. In conclusion, S. obliquus has considerable potential for the remediation of aquatic environments with Cd2+, providing algal resources for developing new microalgae-based bioremediation techniques for heavy metals.

2.
Toxics ; 12(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668500

RESUMEN

A wide variety of dyes, such as toluidine blue (TB), are used daily for a multitude of purposes. After use, many of these compounds end up in aqueous effluents, reaching natural environments, including marine environments. The removal of these pollutants from marine environments must be considered a priority problem. The search for natural techniques, such as biosorption, is a preferred option to eliminate pollution from natural environments. However, biosorption studies in seawater are scarce. For this reason, the living biomass of the marine microalga Phaeodactylum tricornutum was studied to determine its ability to remove TB from seawater. The kinetics of the biosorption process, the isotherms, and the effect of light and pH were determined. This biomass showed a maximum TB removal capacity of 45 ± 2 mg g-1 in the presence of light. Light had a positive effect on the TB removal capacity of this living biomass. The best fitting kinetics was the pseudo-second order kinetics. The efficiency of the removal process increased with increasing pH. This removal was more effective at alkaline pH values. The results demonstrated the efficacy of P. tricornutum living biomass for the efficient removal of toluidine blue dye from seawater both in the presence and absence of light.

3.
Environ Monit Assess ; 196(5): 461, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642157

RESUMEN

Heavy metal pollution is an enduring environmental challenge that calls for sustainable and eco-friendly solutions. One promising approach is to harness discarded plant biomass as a highly efficient environmental friendly adsorbents. In this context, a noteworthy study has spotlighted the employment of Euryale ferox Salisbury seed coat (E.feroxSC) for the exclusion of trivalent and hexavalent chromium ions. This study aims to transform discarded plant residue into a novel, environmentally friendly, and cost-effective alternative adsorbent, offering a compelling alternative to more expensive adsorption methods. By repurposing natural materials, we can contribute to mitigating heavy-metal pollution while promoting sustainable and economically viable solutions in environmental remediation. The effect of different parameters, i.e., chromium ions' initial concentration (5-25 mg L-1), solution pH (2-7), adsorbent dosage (0.2-2.4 g L-1), contact time (20-240 min), and temperature (298-313 K), were investigated. E.feroxSC proved highly effective, achieving 96.5% removal of Cr(III) ions at pH 6 and 97.7% removal of Cr(VI) ions at pH 2, with a maximum biosorption capacity of 18.33 mg/g for Cr(III) and 13.64 mg/g for Cr(VI), making it a promising, eco-friendly adsorbent for tackling heavy-metal pollution. The adsorption process followed the pseudo-second-order kinetic model, aligning well with the Langmuir isotherm, exhibited favorable thermodynamics, and was characterized as feasible, spontaneous, and endothermic with physisorption mechanisms. The investigation revealed that E.feroxSC effectively adsorbed Cr(VI) which could be rejuvenated in a basic solution with minimal depletion in its adsorption capacity. Conversely, E.feroxSC's adsorption of Cr(III) demanded rejuvenation in an acidic milieu, exhibiting comparatively less efficient restoration.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Monitoreo del Ambiente , Cromo/análisis , Agua , Termodinámica , Cinética , Adsorción
4.
Water Environ Res ; 96(4): e11023, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38647151

RESUMEN

The frequent design challenge for existing water resource recovery facilities targets the accommodation of an ~50% load increase within the existing infrastructure and footprint. Off-loading this organic load at the top-end of the plant and redirection toward the digesters has proven the most efficient way of process intensification. The Triple A settler is an "activated primary treatment," stands for alternating activated adsorption, and can be retrofitted into existing rectangular or circular (mostly) primary tanks at a hydraulic retention time of 2 h and a sludge retention time of about 0.5 days. Several technology implementations demonstrate flexible designs adjusting to existing tank geometries and depths of 2.5 to 5.0 m. Different implementation scales from dry-weather flow rates ranging from 0.1 to 10 mgd show generic applicability of the functional principles at any scale: Biosorption, bioflocculation, and assimilation provide the key added value in pretreatment efficiencies of ~60/25/33 in %COD/%N/%P removal compared with application of pure physics in primary settling with typical 33%/9%/11% removal, respectively. PRACTITIONERS POINTS: Triple A is a hybrid form of A-stage and contact stabilizer for advanced primary treatment. Besides COD and TSS, also, P and N can be removed via Triple A. Triple A can be retrofitted in existing rectangular or circular tanks. This high-rate process does not worsen the conditions for enhanced biological phosphorus removal. Energy efficiency, capacity increase, and operational benefits are the main goals of Triple A.

5.
Front Microbiol ; 15: 1374275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605709

RESUMEN

Background: Heavy metal pollution has become a global problem, which urgently needed to be solved owing to its severe threat to water ecosystems and human health. Thus, the exploration and development of a simple, cost-effective and environmental-friendly technique to remove metal elements from contaminated water is of great importance. Algae are a kind of photosynthetic autotroph and exhibit excellent bioadsorption capacities, making them suitable for wastewater treatment. Methods: The effects of heavy metals (copper, lead and cadmium) on the growth, biomolecules accumulation, metabolic responses and antioxidant response of Dunaliella salina were investigated. Moreover, the Box-Behnken design (BBD) in response surface methodology (RSM) was used to optimize the biosorption capacity, and FT-IR was performed to explore the biosorption mechanism of D. salina on multiple heavy metals. Results: The growth of D. salina cells was significantly inhibited and the contents of intracellular photosynthetic pigments, polysaccharides and proteins were obviously reduced under different concentrations of Cu2+, Pb2+ and Cd2+, and the EC50 values were 18.14 mg/L, 160.37 mg/L and 3.32 mg/L at 72 h, respectively. Besides, the activities of antioxidant enzyme SOD and CAT in D. salina first increased, and then descended with increasing concentration of three metal ions, while MDA contents elevated continuously. Moreover, D. salina exhibited an excellent removal efficacy on three heavy metals. BBD assay revealed that the maximal removal rates for Cu2+, Pb2+, and Cd2+ were 88.9%, 87.2% and 72.9%, respectively under optimal adsorption conditions of pH 5-6, temperature 20-30°C, and adsorption time 6 h. Both surface biosorption and intracellular bioaccumulation mechanisms are involved in metal ions removal of D. salina. FT-IR spectrum exhibited the main functional groups including carboxyl (-COOH), hydroxyl (-OH), amino (-NH2), phosphate (-P=O) and sulfate (-S=O) are closely associated with the biosorption or removal of heavy metalsions. Discussion: Attributing to the brilliant biosorption capacity, Dunaliella salina may be developed to be an excellent adsorbent for heavy metals.

6.
J Hazard Mater ; 470: 134306, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626684

RESUMEN

Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.


Asunto(s)
Biomineralización , Cadmio , Penicillium , Fosfatos , Penicillium/metabolismo , Cadmio/química , Cadmio/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Adsorción , Durapatita/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/química , Biodegradación Ambiental , Precipitación Química
7.
Infect Med (Beijing) ; 3(1): 100092, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38586544

RESUMEN

Antimicrobials are frequently used in both humans and animals for the treatment of bacterially-generated illnesses. Antibiotic usage has increased for more than 40% from last 15 years globally per day in both human populations and farm animals leading to the large-scale discharge of antibiotic residues into wastewater. Most antibiotics end up in sewer systems, either directly from industry or healthcare systems, or indirectly from humans and animals after being partially metabolized or broken down following consumption. To prevent additional antibiotic compound pollution, which eventually impacts on the spread of antibiotic resistance, it is crucial to remove antibiotic residues from wastewater. Antibiotic accumulation and antibiotic resistance genes cannot be effectively and efficiently eliminated by conventional sewage treatment plants. Because of their high energy requirements and operating costs, many of the available technologies are not feasible. However, the biosorption method, which uses low-cost biomass as the biosorbent, is an alternative technique to potentially address these problems. An extensive literature survey focusing on developments in the field was conducted using English language electronic databases, such as PubMed, Google Scholar, Pubag, Google books, and ResearchGate, to understand the relative value of the available antibiotic removal methods. The predominant techniques for eliminating antibiotic residues from wastewater were categorized and defined by example. The approaches were contrasted, and the benefits and drawbacks were highlighted. Additionally, we included a few antibiotics whose removal from aquatic environments has been the subject of extensive research. Lastly, a few representative publications were identified that provide specific information on the removal rates attained by each technique. This review provides evidence that biosorption of antibiotic residues from biological waste using natural biosorbent materials is an affordable and effective technique for eliminating antibiotic residues from wastewater.

8.
Front Microbiol ; 15: 1371877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591027

RESUMEN

The resource recovery and reuse of precious metal-laden wastewater is widely recognized as crucial for sustainable development. Superalloy electrolytes, produced through the electrolysis of superalloy scrap, contain significant quantities of precious metal ions, thereby possessing substantial potential for recovery value. This study first explores the feasibility of utilizing fungi to treat Superalloy electrolytes. Five fungi resistant to high concentrations of heavy metals in electrolytes (mainly containing Co, Cr, Mo, Re, and Ni) were screened from the soil of a mining area to evaluate their adsorption characteristics. All five fungi were identified by ITS sequencing, and among them, Paecilomyces lilacinus showed the best adsorption performance for the five heavy metals; therefore, we conducted further research on its adsorption characteristics. The best adsorption effect of Co, Cr, Mo, Re, and Ni was 37.09, 64.41, 47.87, 41.59, and 25.38%, respectively, under the conditions of pH 5, time 1 h, dosage 26.67 g/L, temperature 25-30°C, and an initial metal concentration that was diluted fivefold in the electrolyte. The biosorption of Co, Mo, Re, and Ni was better matched by the Langmuir model than by the Freundlich model, while Cr displayed the opposite pattern, showing that the adsorption process of P. lilacinus for the five heavy metals is not a single adsorption mechanism, but may involve a multi-step adsorption process. The kinetics study showed that the quasi-second-order model fitted better than the quasi-first-order model, indicating that chemical adsorption was the main adsorption process of the five heavy metals in P. lilacinus. Fourier transform infrared spectroscopy revealed that the relevant active groups, i.e., hydroxyl (-OH), amino (-NH2), amide (- CONH2), carbonyl (-C = O), carboxyl (-COOH), and phosphate (PO43-), participated in the adsorption process. This study emphasized the potential application of P. lilacinus in the treatment of industrial wastewater with extremely complex background values.

9.
J Biol Inorg Chem ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587623

RESUMEN

The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (qe = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.

10.
Food Res Int ; 184: 114275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609252

RESUMEN

Trichothecenes are Fusarium mycotoxins with sesquiterpenoid structure, which are widely occurred in grains. Due to high efficiency and environmental friendliness, biological detoxification methods have been of great interest to treat this global food and feed safety concern. This review summarized the biological detoxification methods of trichothecenes from three aspects, biosorption, biotransformation and biotherapy. The detoxification efficiency, characteristics, mechanisms and limitations of different strategies were discussed in detail. Computer-aided design will bring a new research paradigm for more efficient discovery of biodetoxifier. Integrating different detoxification approaches assisted with computational tools will become a promising research direction in the future, which will help to maximize the detoxification effect, or provide precise detoxification programs for the coexistence of various toxins at different levels in actual production. In addition, technical and regulatory issues in practical application were also discussed. These findings contribute to the exploration of efficient, applicable and sustainable methods for trichothecenes detoxification, ensuring the safety of food and feed to reduce the deleterious effects of trichothecenes on humans and animals.


Asunto(s)
Fusarium , Micotoxinas , Tricotecenos , Animales , Humanos , Alimentos
11.
Int J Biol Macromol ; : 131664, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636757

RESUMEN

Pseudomonas strain 2ASCA isolated in subarctic Québec, Canada, produced a cell membrane bound levan-type exopolymer (yield 1.17 g/L), after incubation in growth media containing 6 % sucrose (w/v) at temperature of 15 °C for 96 h. The objective of this study was to optimize levan production by varying the growth parameters. Moreover, polymer chemical characterization has been studied with the aim of increasing knowledge and leading to future applications in many fields, including heavy metal remediation. Higher levan yields (7.37 g/L) were reached by setting up microbial fermentation conditions based on the re-use of the molasses obtained from sugar beet processing. Spectroscopy analyses confirmed the levan-type nature of the exopolymer released by strain 2ASCA, consisting of a ß-(2,6)-linked fructose repeating unit. Gel permeation chromatography revealed that the polymer has a molecular weight of 13 MDa. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) showed that the levan sequestered with a strong affinity for Cr(III), which has never been previously reported, highlighting an interesting biosorption potential. In addition, SEM analysis revealed the formation of nanoparticles in acidified water solution.

12.
Chemosphere ; 357: 141933, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615953

RESUMEN

In this comprehensive study, highlights emerging environmentally friendly methods to eliminating hazardous heavy metals from contaminated water, with an emphasis on bioremediation and biosorption. Breakthroughs, such as the combination of biological remediation and nanotechnology to improve the elimination of metals effectiveness and the use of genetically modified microbes for targeted pollutant breakdown. Developing biosorption materials made from agricultural waste and biochar, this indicates interesting areas for future research and emphasizes the necessity of sustainable practices in tackling heavy metal contamination in water systems. There seems to be a surge in enthusiasm for the utilization of biological remediation and biosorption methods as sustainable and viable options for eliminating heavy metals from contaminated water in the past couple of decades. The present review intends to offer an in-depth review of the latest understanding and advances in the discipline of biological remediation methods like bioaccumulation, biofiltration, bio-slurping, and bio-venting. Biosorption is specifically explained and includes waste biomass as biosorbent with the removal mechanisms and the hindrances caused in the process are detailed. Advances in biosorption like microbes as biosorbents and the mechanism involved in it. Additionally, novel enhancement techniques like immobilization, genetic modification, and ultrasound-assisted treatment in microbial sorbent are clarified. However, the review extended with analyzing the future advances in the overall biological methods and consequences of heavy metal pollution.

13.
Data Brief ; 53: 110214, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38445199

RESUMEN

Traditionally, biosorbents have been used to remove contaminants from polluted water, such as wastewater, landfill leachate, rainwater or drinking water. However, two alternative uses of biosorbents have been proposed relatively recently: the removal of heavy metals from fruit juices by biosorption and the use of saturated biosorbents as animal feed. Because these biosorbents are in contact with food or are used as animal feed, the concentration of contaminants in biosorbents must be known. In addition, the characterization of biosorbents is crucial because biosorbent properties affect both adsorption efficiency and the performance of full-scale biosorbent systems. This article presents data from Fourier transform infrared spectroscopy (FTIR) analysis, and the concentration of toxic metals (determined by ICP-MS) as well as pesticide residues was determined in ten biomass samples, namely, pea skins, straw, seaweed Fucus vesiculosus, wheat bran, rye bran, raspberry seeds, peat, buckwheat husks, highbush blueberry pulp, and blackcurrant pulp. Selected biomass samples were also characterized by scanning electron microscopy (SEM), nitrogen physisorption analysis, and pyrolysis-gas chromatography-mass spectrometry (Py-GC/ MS/FID) analysis.

14.
Sci Rep ; 14(1): 5086, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429371

RESUMEN

This study aimed to assess the value of Pachira aquatica Aubl. fruit peels by exploring their applicability in the biosorption process for the removal of Ni(II) and Cd(II) metal ions. The Pachira aquatica Aubl. fruit peel biochar (PAB) was extensively characterized through various techniques, including proximate analysis, helium pycnometer, XRD, SEM, point of zero charge determination, zeta potential measurement, and Boehm titration. Subsequently, kinetic, isotherm, and thermodynamic batch biosorption studies were conducted, followed by column biosorption tests. The characteristics of PAB, including low moisture content, a neutral point of zero charge, porosity, an irregular and heterogeneous structure, a negatively charged surface, and the presence of functional groups, indicate its remarkable capacity for efficiently binding with heavy metals. Biosorption equilibrium time was achieved at 300 min for both ions, fitting well with a pseudo second-order kinetic model and Langmuir isotherm model. These data suggest that the biosorption process occurred chemically in monolayer. The column C presented an exhaust volume of 1200 mL for Ni(II) and 1080 for Cd(II) and removal of 98% and 99% of removal for Ni(II) and Cd(II), respectively. In summary, PAB demonstrates substantial potential as a biosorbent for effectively removing heavy metals, making a valuable contribution to the valorization of this co-product and the mitigation of environmental pollution.


Asunto(s)
Bombacaceae , Carbón Orgánico , Metales Pesados , Cadmio/análisis , Níquel , Biomasa , Adsorción , Concentración de Iones de Hidrógeno , Metales Pesados/análisis , Iones
15.
Indian J Microbiol ; 64(1): 153-164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38468736

RESUMEN

Heavy metals polluted aquatic ecosystems and become a global environmental issue due to their toxic effect on all forms of ecosystems and further on all forms of life. Heavy metals are non- degradable and accumulated in different life forms by accumulating in the food chain; this increases the need for the development of a sustainable method for the removal of these metals. Biosorption is an eco-friendly and cost-effective convenient technique of heavy metal bioremediation from the contaminated aquatic ecosystem. The current investigation involves biosorption of iron using Bacillus subtilis strain (MN093305) isolated from Ganga river at different physical parameters with the highest rate of biosorption was 96.64%, 98.91%, 97.88%, and 99.44% at pH 5, 60 min incubation period, 35 °C temperature and 2.5 mg/ml of biomass respectively for dead biomass. Living biomass biosorption rate was 87.32%, 96.74%, 96.94% and 95.02% at pH 7, 72 h, 35 °C and 2.5 mg/ml respectively. Functional groups involved in the biosorption of iron by Bacillus subtilis were fitted to a second-order kinetic model. Langmuir and Freundlich's isotherm are used to evaluate data; both isotherms indicate iron absorption as a favorable process.

16.
Heliyon ; 10(5): e26285, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449640

RESUMEN

The work deals with the removal of two dyes, namely methylene blue (MB) and methyl orange (MO), from polluted water by adsorption onto CuO nanoparticles synthesized with a green synthesis procedure, starting from plant resources. Adsorption isotherms are determined at different temperatures aiming at investigating the adsorption mechanisms of the two dyes. The experimental results indicate that, for both MB and MO, the adsorption capacity increases with increasing temperature, with slight differences in the case of MO. Comparatively, the CuO nanoparticles show a higher MB adsorption capacity with respect to MO. A modelling analysis is carried out with a multilayer model derived from statistical physics, selected among a group of models, each hypothesizing a different number of adsorbed molecules layers. The analysis of model parameters allows determining that the adsorbate molecules exhibit a non-parallel orientation on the surface of biosynthesized CuO nanoparticles and each functional group of the adsorbent binds multiple molecules, simultaneously.The model also allows determining the number of dye molecule layers formed on adsorbent surface, in all the cases resulting higher than three, also confirming the effect of temperature on the maximum adsorption capacity.Specifically, the total number of dye layers formed on biosynthesized CuO nanoparticles surface exhibited a range of 4.17-4.55 for MB dye and of 3.01-3.51 for MO dye.Finally, the adsorption energies reveal that adsorption likely involves physical forces (all resulting all below 22 kJ/mol), i.e. hydrogen bonding and van der Waals forces. The adsorption energies for the interactions between dye molecules are lower than those calculated for the interactions between the dye molecules and the adsorbent surface.

17.
Materials (Basel) ; 17(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38473626

RESUMEN

This article explores recent advancements and innovative strategies in biosorption technology, with a particular focus on the removal of heavy metals, such as Cu(II), Pb(II), Cr(III), Cr(VI), Zn(II), and Ni(II), and a metalloid, As(V), from various sources. Detailed information on biosorbents, including their composition, structure, and performance metrics in heavy metal sorption, is presented. Specific attention is given to the numerical values of the adsorption capacities for each metal, showcasing the efficacy of biosorbents in removing Cu (up to 96.4%), Pb (up to 95%), Cr (up to 99.9%), Zn (up to 99%), Ni (up to 93.8%), and As (up to 92.9%) from wastewater and industrial effluents. In addition, the issue of biosorbent deactivation and failure over time is highlighted as it is crucial for the successful implementation of adsorption in practical applications. Such phenomena as blockage by other cations or chemical decomposition are reported, and chemical, thermal, and microwave treatments are indicated as effective regeneration techniques. Ongoing research should focus on the development of more resilient biosorbent materials, optimizing regeneration techniques, and exploring innovative approaches to improve the long-term performance and sustainability of biosorption technologies. The analysis showed that biosorption emerges as a promising strategy for alleviating pollutants in wastewater and industrial effluents, offering a sustainable and environmentally friendly approach to addressing water pollution challenges.

18.
World J Microbiol Biotechnol ; 40(5): 137, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38504029

RESUMEN

The present study evaluated the performance of the fungus Trichoderma reesei to tolerate and biodegrade the herbicide diuron in its agrochemical presentation in agar plates, liquid culture, and solid-state fermentation. The tolerance of T. reesei to diuron was characterized through a non-competitive inhibition model of the fungal radial growth on the PDA agar plate and growth in liquid culture with glucose and ammonium nitrate, showing a higher tolerance to diuron on the PDA agar plate (inhibition constant 98.63 mg L-1) than in liquid culture (inhibition constant 39.4 mg L-1). Diuron biodegradation by T. reesei was characterized through model inhibition by the substrate on agar plate and liquid culture. In liquid culture, the fungus biotransformed diuron into 3,4-dichloroaniline using the amide group from the diuron structure as a carbon and nitrogen source, yielding 0.154 mg of biomass per mg of diuron. A mixture of barley straw and agrolite was used as the support and substrate for solid-state fermentation. The diuron removal percentage in solid-state fermentation was fitted by non-multiple linear regression to a parabolic surface response model and reached the higher removal (97.26%) with a specific aeration rate of 1.0 vkgm and inoculum of 2.6 × 108 spores g-1. The diuron removal in solid-state fermentation by sorption on barley straw and agrolite was discarded compared to the removal magnitude of the biosorption and biodegradation mechanisms of Trichoderma reesei. The findings in this work about the tolerance and capability of Trichoderma reesei to remove diuron in liquid and solid culture media demonstrate the potential of the fungus to be implemented in bioremediation technologies of herbicide-polluted sites.


Asunto(s)
Celulasa , Herbicidas , Hypocreales , Trichoderma , Fermentación , Trichoderma/metabolismo , Diurona/metabolismo , Agar/metabolismo , Herbicidas/metabolismo , Biodegradación Ambiental , Celulasa/metabolismo
19.
Chemosphere ; 355: 141753, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531498

RESUMEN

The discharge of dye-laden wastewater into the water streams causes severe water and soil pollution, which poses a global threat to aquatic ecosystems and humans. A diverse array of microorganisms such as bacteria, fungi, and algae produce exopolysaccharides (EPS) of different compositions and exhibit great bioflocculation potency to sustainably eradicate dyes from water bodies. Nanomodified chemical composites of EPS enable their recyclability during dye-laden wastewater treatment. Nevertheless, the selection of potent EPS-producing strains and physiological parameters of microbial growth and the remediation process could influence the removal efficiency of EPS. This review will intrinsically discuss the fundamental importance of EPS from diverse microbial origins and their nanomodified chemical composites, the mechanisms in EPS-mediated bioremediation of dyes, and the parametric influences on EPS-mediated dye removal through sorption/bioflocculation. This review will pave the way for designing and adopting futuristic green and sustainable EPS-based bioremediation strategies for dye-laden wastewater in situ and ex situ.


Asunto(s)
Colorantes , Aguas Residuales , Humanos , Ecosistema , Bacterias , Agua
20.
Chemosphere ; 355: 141791, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554868

RESUMEN

This research investigates into the efficacy of algae and algae-bacteria symbiosis (ABS) in efficiently decolorizing Remazol Red 5B, a prevalent dye pollutant. The investigation encompasses an exploration of the biosorption isotherm and kinetics governing the dye removal process. Additionally, various machine learning models are employed to predict the efficiency of dye removal within a co-culture system. The results demonstrate that both Desmodesmus abundans and a composite of Desmodesmus abundans and Rhodococcus pyridinivorans exhibit significant dye removal percentages of 75 ± 1% and 78 ± 1%, respectively, after 40 min. The biosorption isotherm analysis reveals a significant interaction between the adsorbate and the biosorbent, and it indicates that the Temkin model best matches the experimental data. Moreover, the Langmuir model indicates a relatively high biosorption capacity, further highlighting the potential of the algae-bacteria composite as an efficient adsorbent. Decision Trees, Random Forest, Support Vector Regression, and Artificial Neural Networks are evaluated for predicting dye removal efficiency. The Random Forest model emerges as the most accurate, exhibiting an R2 value of 0.98, while Support Vector Regression and Artificial Neural Networks also demonstrate robust predictive capabilities. This study contributes to the advancement of sustainable dye removal strategies and encourages future exploration of hybrid approaches to further enhance predictive accuracy and efficiency in wastewater treatment processes.


Asunto(s)
Contaminantes Químicos del Agua , Termodinámica , Técnicas de Cocultivo , Adsorción , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...